Indicator-Based Selection in Multiobjective Search
نویسندگان
چکیده
This paper discusses how preference information of the decision maker can in general be integrated into multiobjective search. The main idea is to first define the optimization goal in terms of a binary performance measure (indicator) and then to directly use this measure in the selection process. To this end, we propose a general indicator-based evolutionary algorithm (IBEA) that can be combined with arbitrary indicators. In contrast to existing algorithms, IBEA can be adapted to the preferences of the user and moreover does not require any additional diversity preservation mechanism such as fitness sharing to be used. It is shown on several continuous and discrete benchmark problems that IBEA can substantially improve on the results generated by two popular algorithms, namely NSGA-II and SPEA2, with respect to different performance measures.
منابع مشابه
R2-EMOA: Focused Multiobjective Search Using R2-Indicator-Based Selection
An indicator-based evolutionary multiobjective optimization algorithm (EMOA) is introduced which incorporates the contribution to the unary R2-indicator as the secondary selection criterion. First experiments indicate that the R2-EMOA accurately approximates the Pareto front of the considered continuous multiobjective optimization problems. Furthermore, decision makers’ preferences can be inclu...
متن کاملA Critical Review of “A Practical Guide to Select ality Indicators for Assessing Pareto-Based Search Algorithms in Search-Based So ware Engineering”: Essay on ality Indicator Selection for SBSE
This paper presents a critical review of the work published at ICSE’2016 on a practical guide of quality indicator selection for assessing multiobjective solution sets in search-based software engineering (SBSE). This review has two goals. First, we aim at explaining why we disagree with the work at ICSE’2016 and why the reasons behind this disagreement are important to the SBSE community. Seco...
متن کاملHypervolume-Based Search for Multiobjective Optimization: Theory and Methods
xi Zusammenfassung xiii Statement of Contributions xv Acknowledgments xvii List of Symbols and Abbreviations xvii Introduction . Introductory Example . . . . . . . . . . . . . . . . . . . . . . . . .. Multiobjective Problems . . . . . . . . . . . . . . . . . . . .. Selecting the Best Solutions . . . . . . . . . . . . . . . . . .. The Hypervolume Indicator . . . . . . . . . ...
متن کاملRobustness in Hypervolume-based Multiobjective Search
The use of quality indicators within the search has become a popular approach in the field of evolutionary multiobjective optimization. It relies on the concept to transform the original multiobjective problem into a set problem that involves a single objective function only, namely a quality indicator, reflecting the quality of a Pareto set approximation. Especially the hypervolume indicator h...
متن کاملMultiobjective Optimization for the Forecasting Models on the Base of the Strictly Binary Trees
The optimization problem dealing with the development of the forecasting models on the base of strictly binary trees has been considered. The aim of paper is the comparative analysis of two optimization variants which are applied for the development of the forecasting models. Herewith the first optimization variant assumes the application of one quality indicator of the forecasting model named ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004